Visualization of Evolutionary Algorithms
Real-World Application of Standard Techniques
and Multidimensional Visualization

Hartmut Pohlheim
Kleinmachnow, Germany
http://www.pohlheim.com/ (hartmut@pohlheim.com)

Overview

• Motivation
• Result visualization
• Multidimensional scaling
• Real world application
• Summary
Motivation

Evolutionary Algorithms
 → work with simple algorithms
 → produce vast amount of data

Problem:
 extraction of useful information to provide insight into
 → state of the population,
 → progress of the Evolutionary Algorithm

Visualization of data

Goals:
 → set of standard methods for different data types
 → advanced method for multidimensional data
 → use of standard visualization methods and tools (MATLAB)
Motivation

Data types

• individuals (solution vector)
 → variables and objective value(s)

• (sub) population
 → individuals (variables/objective values of best/all individuals)
 → distance between individuals
 → ranking / order and size of subpopulations

• different time frame
 → one generation state of EA
 → multiple / all generations course of EA
 → multiple runs comparison of EA

• problem-specific visualization

• properties of objective function
Result visualization

Standard results

Visualization of EA
real-world application

H. Pohlheim, GECCO'99

Standard result visualization (course of optimization)

- objective value of best individual (convergence plot)
- variables of best individual

(optimization of extreme execution time of bubble sort module)
Result visualization

Strategy selection

Selection of successful strategies

- each subpopulation employs a different strategy (different operators and/or parameters)
- When is which strategy successful?
- next run(s) with selected strategies
 ⇒ 140.000 instead of 200.000 objective function calls
 (optimization of extreme execution time of bubble sort module)

Visualization of EA real-world application

H. Pohlheim, GECCO'99
Advanced visualization

Comparing two runs

Visualization of EA real-world application

H. Pohlheim, GECCO'99

Multidimensional scaling

• comparing optimization runs
 → variables of best individuals ("path through search space")
 → multi criteria objective values ("path through solution space")
 1. run: red paths 2. run: blue paths

optimization of CHOPPER system (controller of DC-line converter)

Sammon-Mapping: comparison variables of best individuals Chopper (Nr. 54 and 55)

Sammon-Mapping: comparison best objective values Chopper (Nr. 54 und 55)
Real world application

Requirements

- What do we need?
 - powerful optimization tool including operators and methods for a broad range of problems
 - multiple access possibilities (script and GUI interface)
 - integration of visualization methods (on-line and off-line use)

Visualization of EA real-world application

H. Pohlheim, GECCO'99

Requirements for real world application

- Best obj. vals per subpop
- Variations of best ind. (scaled)
- Obj. vals of all gen. (85% best)
- Variables of all ind. (scaled) [Gen: 50]
- Input / Visualization
- Gopt(62) = 111111;
- Gopt(63) = 564613;
Real world application

Graphical user interface

- access to all operators and options (including visualization) before and during an optimization

Visualization of EA real-world application

H. Pohlheim, GECCO'99
Visualization of problem-specific results

- variables are the smallest unit of the EA
 but: complex problem-specific meaning of variables
 ⇒ tailored visualization methods needed

parameter identification of diesel engine model

execution time of feature extraction modul

lateral controller of an autonomous road vehicle

H. Pohlheim, GECCO'99
Summary

Visualization methods for Evolutionary Algorithms

Advantages:

→ baseline for understanding the evolutionary process
→ insight into the work of the Evolutionary Algorithm
→ powerful visualization tools to aid the designer and user of Evolutionary Algorithms

Application to real world problems proved successful

→ result visualization
→ selection of successful strategies
→ comparison of highdimensional data
→ problem-specific visualization

example implementation

“Genetic and Evolutionary Algorithm Toolbox for use with Matlab”
http://www.geatbx.com/index.html